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A fI STRA CT

This paper introduces a new tool for image texture analysis

called a polarogram. A polarogram is a polar plot of an orientation

sensitive texture statistic. Polarograms give rise to a class of
texture descriptors which are sensitive to both texture coarseness and
directionality, but yet which are invariant to rotations of the image

textures. An experiment is described in which polarograms are applied

to the classification of texture samples.
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1. INTRODUCTION

This paper introduces a new tool for image texture

analysis called a polarogram. A polarogram is a polar

representation of an orientation specific texture statistic.

It can be used to obtain information about both texture

coarseness and texture directionality.

Texture coarseness, or the size of the texture elemeni, s,

is ordinarily related to the autocorrellation of the texture.

For example, the contrast feature for grey level cooccurrence

matrices (Haralick[l]) or grey level difference histogr.ams

(Weszka et all21) is, essentially, a measurement of a singie

value of the image autocorrelation. It is ordinarily compu:ed

for pairs of image points which are close to one another in

the image. High values of contrast usually indicate fine

textures (where there are relatively many edge points) and tow

values of contrast indicate coarse textures. Of course, other

factors such as edge sharpness also effect the value of the

contrast statistic.

Texture directionality has not been handled as adequat,l,,.

as coarseness. It has been suggested that directionatll'

specific statistics be computed. For example, suppose that

P(0,r) is a polar representation of the power spectrum oE a

texture. Then Weszka et al[2] suggested "wedges" defined a:3:
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as direction sensitive texture statistics. A difficulty with

such statistics is that they are not rotation invariant -

i.e., rotating the original texture changes the. statistics.

Since orientation cannot, in general, be controlled, and might

even vary across a single "homogeneous" field, it is important

that even statistics which measure directionality be rotation

invariant. Polarograms can be used to generate rotation

invariant statistics which are sensitive to texture

directionality.

In Section 2 we define the polarogram, and present some

examples. Section 3 contains an experimental study using the

texture database employed in (3]. Finally, Section 4 contains

conclusions and a discussion.
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2.POLAROGRAMS

-Polarograms are a new tool for describing image textures.

A polarogram is a polar plot of a texture statistic as a

function of orientation. For example, let D(a) be a

displacement vector of fixed magnitude, d, and variable

orientation, a, and CD(a) be the cooccurrence matrix for

displacement D(a). Let f be some statistic, such as contrast,

defined for a cooccurrence matrix. Then we can define the

polarogram, Pf, by

Pf(a) = f(CD(a))

As a simple example, consider the vertical bar texture in

Figure la. The bars are five pixels wide. Let D(a) have

magnitude 1, and let f be the contrast statistic. Then Figure

lb displays the polarogram Pf. Note that Pf(n /2) = 0 since

all pairs of adjacent vertical points have identical grey

levels. Pf(0), on the other hand, has value .4, since 2 out

of every 5 one's are adjacent to J zero. In general, if we

regard the texture in Figure la as a continuous image, then

Pf(a) = 2cos(a)/5. In practice, Pf(a) is only computed for a

discrete set of values for a. An interpolation function is

used to compute Pf(a) for intermediate values of a. The

simplest interpolation scheme connects consecutive values of

Pf(a) with straight lines.

Texture statistics are derived from polarograms by

computing size and shape features of the polarogram. The

shape features will ordinarily not only depend on the shape of
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the boundary of the Polarogram, but also on the position of

the origin of the polarogram within that shape. For example,

the polarograms in Figures 2a and 2b have the same boundary

shapes (circles), but the polarogram in Figure 2a is centered

at the circle center, while the polarogram in Figure 2b is

centered away from the circle center. This difference

indicates a crucial difference in the two underlying textures.

The texture corresponding to the polarogram in Figure 2a is

isotropic with respect to the statistic of the polarogram,

while the texture corresponding to Figure 2b is not. The

skewness feature defined below measures the extent of such

isotropy.

I\n important class of statistics which can be computed

from a polarogram are its moments from the origin (note that

these are not the same as the central moments of the

polarogram). The p'th moment of Pf is

2n

up= /21Tj (Pf(a) Pf) da

where

27r

Pf i/2ITJ Pf(a)da

i



a) vertical bar texture

b) polarogram for the texture in (a)

Figure 1. Example of a polarogram.



a) radially symmetric polarogram

b) non-symmetric polarogram

Figure 2. The polarogram of an isotropic and non-isotropic texture.
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in the special case where the boundary of Pf is a

polygon, it can be shown that:

u I = a1

2
U2 = a 2 - u 1

3
U3 = a 3 - 3ula 2 + 2u1

where n

a p = Y Yi/2 T, ap(i)

and i=1

aibi sinyil (ci+ai - bicosyi) (ci+bi - aicosYi)

a i Yi aibisin2yi

aabi 2 (cot di + cot B)

a2(i) y1 i.

33 i ai.± sinyi  cosec ai cot a. + cosec B cot B

+log I[cosec ii+cot i) (cosec i +cot Bi 1

See Figure 3 for the definitions of ai i r i Y it aiI bi' ci"

The first moment, ul, represents the deviation from the

mean of the perimeter distance to the origin, u2 the variance,

and u3 the skewness of the perimeter distribution. Two simple

measures of size, which are used in the experiments in Section

3, are area of the polarogram and perimeter.
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Notice that the statistics computed from the polarogram

are invariant to the orientation of the polarogram - i.e., if

P'f(a) = Pf(a+da), then P and P' will have the same

statistics. Since rotating the original texture results in

rotating the polarograms, these statistics are invariant to

rotations of the image textures, yet can still be used to

measure texture "directionality."

As an example, Figure 4 contains two texture samples, one

of grating and the other of metal scrap. Figure 5 contains

polarograms for the textures in Figure 4. These are based on

the contrast statistic for cooccurrence matrices using D(a)

with fixed magnitude 5 e symmetry in the polarograms is

due to the symmet-ry in the cooccurence matrices - CD(a) =

CD(a+pi). Cooccurronce matrices were computed for directions

which are multiples of 45 degrees. The larger size of the

grating polarogram reflects the higher contrast of the grating

(note that the first order grey level statistics of the two

textures are identical). The relatively low value of the

grating polarogram in the horizontal direction reflects the

elongation of the grating texture elements, an aspect of

texture directionality. The scrap metal, on the other hand,

is more isotropic, so its polarogram is more circular.



Figure 4a. A 64x64 grating texture

Figure 5a -Polarogram of Figure 4'a for distance 5 cooccurrence matrices

and the contrast descriptor.



Figure 4b. A 64x64 metal texture

Figure 5b. Polarogram for Figure 4.b for distance 5 cooccurrence matrices

and the contrast descriptor.



II

a) grating (C)

b) concrete (E)

c) pebbles (P)

d) tree bark (T)

e e (
e) metal (M)
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3. EXPERIMENTS

An experiment was performed to illustrate the use of

polarogram statistics for texture classification. A database

of five texture classes was chosen, and ten 64x64 samples were

included in each class. The textures in the database include

grating (G), tree bark (T), metal scrap (M), pebbles (P), and

concrete (E). These samples form part of a larger database

described in experiments reported in [3]. Figure 6 contains

one 64x64 sample from each of the five classes. All of the

textures have been subjected to a grey scale normalization

procedures which "flattens" their histograms and guarantees

that all of the samples have identical first-order grey level

statistics.

Polarograms were computed for the contrast descriptor of

the grey level cooccurrence matrix. Cooccurrence matrices

were computed for each of the eight principle directions on

the digital grid, and for distances between pairs of points of

1, 3 and 5. Thus, three polarograms were computed for each

texture sample. For each of the polarograms, the five

statistics discussed in Section 2 were computed. Three

classification experiments were performed; one based on the

distance 1 statistics, one based on the distance 3 statistics

and one based on the distance 5 statistics.

The textures were classified using a multivariate linear

discriminant function [4], computed based on the assumptions

that the probability density functions for the statistics of
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all classes were multivariate normal, with a common covariance

matrix, but different mean vectors, and that the prior

probability of each class is known. Subroutine ODNORM of

IMSLIB was use to compute the discriminant function and to

perform the classification.

The results of the experiments are summarized on Tables

1-3. Both the distance 5 and the distance 3 polarograms gave

classification rates of 88% on this database of 50 textures.



G E PT M
G 1.0 0 0 0 0

E 0 1.0 0 0 0

p 0 0 .9 0 .

T .1 0 .2 .6 .

M 0 0 .3 0 .

Percent error 16%

Table. 1. Confusion matrix, D=l



G E P T M

G 1.0 0 0 0 0

E 0 1.0 0 0 0

P 0 0 .9 0 .

T .1 0 .1.7 .

M 0 0 .2 0 .8

Percent error =12%

Table 2. Confusion matrix for, D=3



G E P T M

G 1.0 0 0 0 0

E 0 1.0 0 0 0
P 0 0 .8 1 . 1

T 0 0 .1.8 .

M 0 0 .2 0 .8

Percenft error 12%

Table 3. Confusion. matrix for, D=5
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4. SUMMARY

We have presented a new computational tool for image

texture analysis called a polarogram, and illustrated its use

by applying it to a texture classification problem.

Polarograms were designed to yield texture descriptors which

are sensitive to both texture coarseness and directionality.

An important aspect of directionally sensitive polarogram

statistics is that they are invariant to rotations of the

image texture. We are currently applying the polarogram to

the unsupervised segmentation of scenes containing many

differently textured areas.
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